

Appendix B – Tables

Table T1 - Summary of Soil A	Analytcial Resu	lts - Site A	ssessme	nt again	st Reside	ntial a	nd Recreation	onal/Op	en Space T	Trigger Va	lues											t								E24098 -	Marrickvill	le					
						,	Heavy Metals							PJ	Uts				81	EX			п	RH		77	н	Pestic	ides	PCBs	Asbestos		PFAS		Phenois	vo	Cs
Sample ID	Depth (m)	As	Cd	ů	Cu	P	Pb TCL	РН	g Ni	NI TCLP	Zn	Care in agents PANs is a B (o) P TEQ)	Benzo (dpyrene	Benzo(o)pyrene TCLP	Total PAHs	Total PAH s TOLP	Maphthalaro	Berto no	Tolseno	Eth yl bien zerne	Total Xylenes	n	F2	rs	F4	Ce-Ca	23,03	00%	Oppos	Total	Prese nos / Absence	AOM	PFOS	PFOS + PFHS	Total	Tetra citior outh ene (PCE)	Tric Manaethene (TCE)
Argus 2014 (ESS611/2 - Detailed Site A	Assessment)				_	_		_	_		_																										
Fill Soits BH1	0-0.5	4	0.2	12	1 9	1 2	27 NA	-	1 2	I NA	188	d	e0.05	NA.	- 1	NA.	<0.1	<0.2	-0.5	d	0	-25	:50	<100	r50	-25	r50	NA.	NA.	NA NA	YES	NA.	NA.	NA.	NA.	NA.	NA.
BH1	0.5-1.0	4	0.2	13	131	-	21 NA	- 4	1 8	NA.	56	- 4	<0.05	NA	<1	NA.	<0.1	<0.2	<0.5	d	<2	<25	<50	<100	<50	<25	<50	NA.	NA.	NA.	NA.	NA.	NA.	NA.	NA.	NA.	NA
BH3 BH4	0-0.5 0.3-0.5	5	<0.1 0.8	9	35	1	14 NA 28 NA	0.	1 1	NA NA	5 378	7.7	<0.05 4.9	NA NA	- d	NA NA	0.2	<0.2	<0.5	- 41	<2	<25 <25	<50	<100 270	<50 170	<25	<50 170	ND ND	NA NA	<0.7	No No	NA NA	NA NA	NA NA	NA NA	NA NA	NA.
BHS	0.2-0.4	11 6	3.4 0.8	28	275 134	11	176 NA	0.	9 19	NA	1200 994		3.1 3.5	NA	-4	NA	0.1	<0.2	<0.5	4	<2	<25	<50	270	200	<25	180 170	ND	NA	<0.7	No	NA	NA	NA	NA	NA	NA
8H6 8H7 8H8	0.2-0.4	10	0.5	14	68	5	47 NA 18 NA	0.	3 10	NA.		3.3	1.75	NA NA	d	NA NA	<0.1	<0.2	<0.5	d d	<2	-QS -QS	<50	260 <100	170 <50	<25 <25	<50	ND ND	NA NA	<0.7	NA YES	NA NA	NA NA	NA NA	NA <1	NA <0.5	NA 1
BH8 BH9	0.1-0.3	4	1.1	43	113	5	27 NA	0.			760	NA 3.3	NA.	NA.	NA.	NA.	NA.	<0.2	<0.5	- 4	<2	-25	<50	210 520	210	<25	190 420	ND	NA NA	NA.	No	NA	NA.	NA.	NA.	NA NA	NA
8H10	0.4-0.6	10 10	0.3	9	34 19	- 5	56 NA 73 NA	<	1 8	NA NA	355	1	0.4	NA NA	- 4	NA NA	<0.1	<0.2	40.5 40.5	- 4	<2	-25	<50	<100	380 160	<25	110	NA.	NA NA	NA.	No No	NA.	NA NA	NA.	NA NA	NA.	NA NA
8H11 8H12	0.2-0.4	9 21			241 260		76 NA	- <	1 9		1770	1.6	0.6	NA.	- 0	NA.	<0.1	<0.2	×0.5	- 0	<2	-25	<50	500 350	320 280	<25	340 280	ND	NA.	<0.7	No	NA.	NA.	NA.	d	NA.	NA.
8H13	0.2-0.4	8	< 0.1	17	8	- 2	28 NA	<	.1 2	NA.	32	1.6	0.7	NA NA	- d	NA NA	<0.1	<0.2	40.5 40.5	V V	-2	<25 <25	<50	<100	<50	<25	<50	NA.	NA.	NA.	No No	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
8H14 8H15	0.2-0.3	5 16	0.8 <0.1		171 8		29 NA. 37 NA.	0.	1 6	NA NA	439 17		\$.\$ <0.05	NA.	- 41	NA NA	<0.1	<0.2	<0.5	d	- (2	-25	<50	190	210	<25	170 <50	NA ND	NA NA	NA c0.7	No No	NA.	NA NA	NA NA	NA c1	NA NA	NA.
8H16	0.3-0.5	7	0.1	21	15	- 6	57 NA	- 4	1 6	NA.	60	- 41	<0.05	NA.	- 4	NA.	<0.1	<0.2	<0.5	- 4	-2	-25	<50	<100	-50	<25	<50	NA.	NA	NA.	No	NA.	NA	NA.	NA.	NA	NA.
8H17 8H21	0.3-0.5	4 16	<0.1 1.7		9 86	4	11 NA 62 NA	0.	1 2	NA.	26 960	<1 10	<0.05 6.1	NA NA	-01	NA NA	<0.1 <0.1	<0.2 <0.2	40.5 40.5	-0	-2	-25	<50 <50	<100 1120	<50 440	<25	<50 690	ND ND	NA NA	<0.7	No No	NA NA	NA NA	NA NA	<1 NA	KO.S NA	<0.5 NA
BH22	0.2-0.3	12	0.3	19	26	2	79 NA	0.	1 4	NA.	210	2.8	1.5	NA.	- 4	NA.	<0.1	<0.2	40.5	-1	-2	-25	<50	380	270	<25	320	ND	NA.	+0.7	YES	NA.	NA.	NA.	NA.	NA	NA.
D1 (duplicate of BH9) D2 (duplicate of BH4)	0.4-0.6	15 11	0.5 1.2	11	48	- 1	91 NA	0.	1 9	NA.	945 575	NA.	NA NA	NA NA	NA NA	NA NA	<0.1	<0.2	40.5 40.5	-d	<2	<25 <25	<50	230 300	240 240	<25	230 240	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
D3 (duplicate of BH15)	0.3-0.5	15	< 0.1	22	5	- 3	33 NA	<	.1 5	NA.	16	NA.	NA.	NA.	NA.	NA.	<0.1	<0.2	<0.5	d	<2	<25	<50	300	240	<25	170	NA.	NA.	NA.	NA.	NA.	NA.	NA.	NA.	NA.	NA.
D4 (duplicate of BH11) Natural Soils	0.2-0.4	6	0.6	13	128	2	70 NA		1 6	NA.	1360	100	NA.	NA.	NA.	NA.	<0.1	<0.2	<0.5	-41	<2	<25	<50	260	290	<25	290	NA.	NA	NA	NA.	NA	NA	NA.	NA.	NA.	NA
BH1	1.0-1.5	6	< 0.1		10	1	13 NA	- 4	1 1		22		NA.	NA	NA	NA.	NA.	NA.	NA.	NA.	NA.	NA	NA	NA	NA	NA	NA	NA.	NA.	NA.	NA.	NA.	NA.	NA.	NA.	NA.	NA.
BH3 BH3	0.5-1.0 1.0-1.5	5 4	<0.1	14	9 8		18 NA 17 NA	- 4	1 1	NA NA	33 16	K1 NA	<0.05 NA	NA NA	<1	NA NA	<1 NA	<0.2 NA	40.5 NA	<1 NA	×2 NA	<25 NA	<50 NA	<100 NA	<50 NA	<25 NA	<s0 NA</s0 	ND NA	NA NA	NA NA	NA. NA	NA NA	NA NA	NA. NA	NA NA	NA. NA	NA NA
BH4	0.9-1.0	- 5	0.3	11	22		32 NA	0	1 4	NA.	172	NA.	NA.	NA.	NA.	NA.	NA.	NA.	NA.	NA.	NA.	NA	NA.	NA.	NA.	NA.	NA	NA.	NA.	NA.	NA.	NA	NA.	NA.	NA.	NA.	NA
BHS BH6	0.8-1.0 0.9-1.0	4	<0.1		10 14		04 NA.	- 4	1 2		61 92	NA.	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA.	NA.	NA.	NA.	NA.	NA NA	NA.	NA NA	NA.	NA NA
8H7	1.1-1.3	2	0.2	15	19		B1 NA	- 4	1 2	NA	272	NA.	NA.	NA.	NA.		NA.	NA.	NA.	NA.	NA.	NA	NA.	NA	NA.	NA.	NA	NA.	NA.	NA.	NA.	NA.	NA.	NA.	NA	NA.	NA.
8H9 8H10	0.8-1.0	7	<0.1 <0.1	12	7 8	- 2	23 NA 27 NA	- 4	1 2	NA NA	83	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA.	NA NA	NA.	NA NA	NA NA	NA NA	NA NA	NA.	NA NA
BH11	0.7-0.9	12	0.2	17	16		99 NA	<	1 4	NA.	174	NA.	NA.	NA.	NA.	NA.	NA.	NA.	NA.	NA.	NA.	NA	NA.	NA.	NA.	NA.	NA	NA.	NA.	NA.	NA.	NA.	NA.	NA.	NA.	NA.	NA.
8H12 8H13	0.7-0.9 0.8-1.0	12	0.3		18 23		53 NA 31 NA	<	1 4		318 150		NA NA	NA.	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA.	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA.
BH14	0.6-0.8	4	<0.1	14	8	- 2	M NA	- 4	1 1	NA	31	NA.	NA	NA.	NA.	NA.	NA	NA.	NA.	NA	NA.	NA.	NA	NA	NA.	NA.	NA	NA.	NA.	NA.	NA.	NA.	NA.	NA.	NA.	NA	NA.
8H15 8H16	0.9-1.0 0.8-1.0	10 7	< 0.1	16 21			10 NA NA	- 4	1 1		6 11	NA NA	NA NA	NA.	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA.	NA.	NA.	NA NA	NA.	NA NA	NA NA	NA NA	NA.	NA.
8H17	0.7-0.8	3	<0.1	15	6		28 NA	<	1 2	NA.	16	NA.	NA.	NA.	NA.	NA.	NA.	NA.	NA.	NA.	NA.	NA.	NA.	NA.	NA.	NA.	NA.	NA.	NA.	NA.	NA.	NA.	NA.	NA.	NA.	NA.	NA.
El 2019 - Current Investigation (24095.	5.E03.Rev0 - Addition	al Site Inves	igation)																																		
BH1M_0.2-0.3		5.5					20 NA				130	3.8	2.5	< 0.001	28.7		< 0.5	< 0.1	< 0.1	< 0.1	< 0.3	< 20	< 50	< 100	< 100	< 20	< 50	< 0.1	ND	< 0.5	No	< 0.005	< 0.005	< 0.005	NA.	<0.5	<0.5
8H2_0.2-0.3 8H3M_0.3-0.4	4	48	< 0.4	25 8.2	69	2	90 0.18 60 NA	1 0	1 9.8 3 15	NA NA	120	1.7	1.8	NA NA	6.6	NA NA	< 0.5	< 0.1	< 0.1	< 0.1	< 0.3	< 20 < 20	< 50	< 100 420	< 100 270	< 20	< 50 330	< 0.1	ND ND	<0.5	No No	< 0.005	< 0.005	< 0.005 0.0087	NA NA	<0.5 ≠0.5	<0.5
BH6M_0.2-0.3	3	7.8	1.1	15	210	3	90 0.18	0.	6 15		720	1.6	0.8	NA.	6.1	NA.	< 0.5			< 0.1	< 0.3	< 20	< 50	< 100	< 100	< 20	< 50	< 0.1	ND			< 0.005	0.037	0.037	- 41	<0.5	<0.5
BH6M_0.7-0.8 BH7_0.2-0.3		4.4	< 0.4	16	23 82	1	55 NA	0.	2 <5	NA NA		1.2	< 0.5	NA NA	< 0.5	NA NA	< 0.5	< 0.1		< 0.1	< 0.3	< 20 < 20	96	230	< 100 < 100	< 20	130	NA < 0.1	NA ND	NA r0.5	NA.	× 0.005	NA 0.018	0.018	KS NA	<0.5 <0.5	<0.5
BH9M_0.2-0.3		7	0.4		110		10 0.15	0.		NA	360	74	52	<0.001	819	<0.001	<.5	< 0.1	< 0.1	< 0.1	< 0.3	< 20	53	1200	180	< 20	320	< 0.1	ND	< 0.5	No	< 0.005	0.0079	0.0079	NA	<0.5	<0.5
BH10_0.3-0.4 BH12_0.0-0.1		2.6 10	< 0.4	5.3	18 12		40 NA 31 NA	0.	1 <5		180	1.2	< 0.5	NA NA	2.2 < 0.5	NA NA	< 0.5	< 0.1	< 0.1	< 0.1	< 0.3	< 20 < 20	< 50	< 100 < 100	< 100 < 100	< 20	< 50	0.57	NA ND	r0.5	No No	< 0.005	< 0.005	< 0.005	KS NA	<0.5	<0.5
BH13_0.3-0.4		45	0.7	10	51	1	80 NA	0.	2 15	NA.	310	1.2	< 0.5	NA.	< 0.5	NA.	< 0.5	< 0.1	< 0.1	< 0.1	< 0.3	< 20	< S0	< 100	< 100	< 20	< 50	< 0.1	ND	<0.5	YES	< 0.005	0.013	0.013	NA	0.7	<0.5
BH13_0.7-0.8 BH14M_0.2-0.5	.3	15 11	0.4	22	16 39	- 6	55 NA 03 NA	0.	2 8.8 3 12	NA NA	46 200	1.2	< 0.5	NA NA	2.5	NA NA	< 0.5	< 0.1	< 0.1	< 0.1	< 0.3	< 20	< 50 < 50	<100 130	< 100 < 100	< 20	< S0 65	NA < 0.1	NA ND	NA <s< td=""><td>No No</td><td>< 0.005</td><td>NA < 0.005</td><td>NA < 0.005</td><td>NA NA</td><td><0.5 <0.5</td><td><0.5 <0.5</td></s<>	No No	< 0.005	NA < 0.005	NA < 0.005	NA NA	<0.5 <0.5	<0.5 <0.5
001		15	<0.4	18	39 31	8	NA NA	0	2 11	NA	150	NA.	NA	NA	NA.	NA.	NA	< 0.1	< 0.1	< 0.1	< 0.3	<20	<50	160	<100	<20	72	NA.	NA.	NA.	NA	NA.	NA	NA.	NA	NA.	NA
Natural soits RH1M 0.7-0.8	8	4.6	< 0.4	19	17	т.	96 NA	1 40	1 19	NΔ	1.2	<0.5	<0.5	NΔ	<0.5	NA.	< 0.1	< 0.1	<0.1	<0.3	40.3	< 50	< 100	< 100	d00	< 50	NA.	NA.	NΔ	NA.	NA	NΔ	NA.	NA.	NA.	NA.	NA
8H2_18-19 BH3M_17-18		12		18	< 5	1	10 NA	<0			1.4	0.7	5.1	NA.	<2	NA.	< 0.1	< 0.1	< 0.1	< 0.3	< 0.3	< 50	< 100	< 100	<100	< 50	NA	NA NA	NA.	NA.	No	NA.	NA.	NA.	NA.	NA NA	NA.
BH3M_1.7-1.8 BH6M_1.2-1.3		4.2	< 0.4	16	21	3	37 NA	<0	1 110		1.2	< 0.5	< 0.5	NA NA	< 0.5	NA NA	< 0.1	< 0.1	< 0.1	< 0.3	< 0.3	< 50 74	< 100 190	<100 <100	<100	< 50 110	NA NA	NA NA	NA.	NA NA	No NA	NA.	NA NA	NA NA	NA <1	NA <0.5	NA <0.5
BH6M_1.7-1.8 BH7_1.4-1.5		14	< 0.4	21	12	- 2	21 NA 80 NA	<0	1 15	NA	1.2	< 0.5	< 0.5	NA	< 0.5	NA	< 0.1	< 0.1	< 0.1	< 0.3	<0.3	< 50	< 100	< 100	<100	< 50	NA	NA	NA.	NA.	NA.	NA.	NA.	NA	<1	<0.5	<0.5
BH12_0.7-0.8		14	< 0.4			1	17 NA	<0	1 43	<0.05 NA	1.2	< 0.5 < 0.5	< 0.5	NA NA	< 0.5	NA NA	< 0.1	< 0.1	< 0.1	< 0.3	< 0.3	< 50 < 50	<100 <100	< 100 < 100	<100	< 50	NA NA	NA NA	NA NA	NA NA	No No	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
BH14M_1.2-1.3	3	2.6	< 0.4	<5	<5	9	L6 NA	<0	1 <5	NA.	1.2	< 0.5	< 0.5	NA	< 0.5	NA	< 0.1	< 0.1 al Analysis	< 0.1	< 0.3	< 0.3	< 50	<100	< 100	<100	< 50	NA	NA.	NA	NA.	No	NA	NA.	NA	NA	NA	NA
Maximum concentrat	ation	45	3.4	40	275	1	176 0.18		1 110	<0.05	1770	74		<0.001	819		0.2	0	0	0	0	74	190			110			0	0	0		0.037	0.037		0.7	1
El Maximum Concentra 95% UCL	rations	48	1.1	27	210 78.29	2	90 0.18	- 1	1 110	<0.05 NC	720	74	52	<0.001	819	0	0	0	0	0	0	74	190	1200	270	110	220	0.57	0	0	0	0	0.037	0.037	0	0.7	0
SON OCC.		190	190				100		11.00	HC.	4,0	HU	190	THE	- NC	THE		ELs .	PIL.	NC.	1962	NC.	NU	74.0	786	1962	796	190	1967	190	190	No.	HU	790	NC.	1962	190
HL B - Residentis	ial	500	150	500 Cr(VII)	30,000	12	100	12	0 1200		NR	4			400															1					45,000		
		ш	_	LI(VI)			- KANANAN	Sour	ce depths (0 m	to <1 m. BGL	21	_	·······		_		NL.	3	T NL	NL.	Z30	250	NL.	J	*******	******	*****		*****			•••••	*******				
HSL D - Commercial / In Soil testure classification	Industrial 1 -Sand 1								ce depths (1 m :				_			_	NL M	3	NL M	NL M	NL M	370	NL M														
					_	_	F.00.00		Source depths	(4 m+)	_		_				NL NL	3	NL.	NL NL	NL NL	NL.	NL.	1													
EIL/ESL-1		100		165	90	61			35	1	190		23.				170	50	85	70	105	180	120	300	2,800			180									
Management Limits - Recreation												`										700	1000	2500	10000												
Coarse grained soil teo Asbestos contamination HSL – t	B (Residential)	-																								l					0.05						
Bonded ACM (Next Asbestos contemination I Non Bonded / Friable Asbest	HSL for																														0.05						
HEPA (2018) PFAS Human Health Crite	teria for Residential wi	h iii																														20		2			
minimal opportunities for so HEPA (2018) PFAS ecological guideline land use*	on access* se values for Residenti	-																																	l .		
			4	4																													0.01	5333333333			
	「1 (mg/kg)	100	20	100			10	4	40				0.8		200			10	255	800	1,000					650	10000		< 50		If detected	50		20		14	10
General Solid Waste TCLP1 (mg/l	(L) / SCC1 (mg/kg)	5.0 / 500	1.0 / 100	5/1,90		5/1	.500	0.21	50 2 / 1,058				0.04/10		NR / 200			0.5/18	14.4/518	30 / 1,080	50 / 1,800								NA/<50		material is					0.7/25.2	0.5 / 18
	T2 (mg/kg)	400	80	400		<i>-</i>	10	11	_	- 5777777			32		800			40	1,152	2,400	4,000								NA.		material is Special Waste - Asbestos Waste					56	40
Restricted Solid		_	+	_	- 60000	% —		Ø —	_	- 9999			_		_			_	1,152 57.6 /							2500	40000	 			Waste						
Waste TCLP2 (mg/l	(L) / SCC2 (mg/kg)	20 / 2,00	4 / 400	20 / 7,60	~ <i>(((()</i>	20/6	5,000	0.87	8 / 4,20	· ///////			0.16/23		NR / 800			2/72	57.6 / 2,073	120 / 4,320	200 / 7,200					Ш.		Ш.	NA / <50							2.8 / 100.8	2.0 / 72
				•	Eugustic .		Paradess			***************************************																•											

NSW EPA 2014 ³ Restricted Solid Waste Notes:

HELC HELC EMESS NL ND NA NC 1 2 3 4 F1 F2 F3 F4 *

All neutra are recorded in mg/kg (unless otherwise stated)

Highighed values indicates concentration exceeds Human Health Based Sol Chiefa (#E. 8 / HSL C)
Highighed indicates HEPM 2013 chiefa exceeded and no ROVIETPA 2014 waste classification res (Mithod TCLP analysis)
Highighed values indicates concentration exceeds Excligical Investigation/Screening Levels (#E.E. ES.4.)

Insplayment and relation accounts on construction of the Configure of the

Table T2 - Summary of Groundwater Analytical Results

					Heavy Metals						PAHs			B1	EX			Т	RH		T	PH	V	OCs		PFAS		Phe	nols
Sampi ID	ele	Arsenic	Cadmium	Chromium	Copper	Lead	Mercury	Nickel	Zinc	Benzo(a)pyrene	Total PAHs	Naphthalene	Benzene	Toluene	Ethylbenzene	Total Xylene	7.	F2**	F3***	F4	C6-C9	C29-C36	Trichloroethene (TCE)	2-Propane (Acetone)	PFOA	PFOS	PFOS + PF HxS	2-Methylphenol (O- Cresol)	Total
Argus 2014 (ES5611/2 - E	Detailed Site Assessn	nent)																											
GW1		<5	<1	<1	2	<1	<0.1	2	7	< 0.2	< 0.2	< 0.2	<1	<1	<1	<2	<10	<100	NA	NA	NA	NA	NA	NA	NA	NA	NA	ND	NA
GW2	2	<5	<1	<1	<1	<1	<0.1	5	10	< 0.2	< 0.2	< 0.2	<1	<1	<1	<2	<10	<100	NA	NA	NA	NA	NA	NA	NA	NA	NA	ND	NA
El 2019 - Current Investig		v0 - Additional Site Ir				,				•		,			,														
BH1M		<1	<0.2	<1	<1	<1	<0.1	58	35	<1	<1	<1	<1	<1	<1	<3	<20	<50	<100	<100	<20	<100	3	ND	0.08	0.01	0.01	ND	<3
BH3M		1	<0.2	<1	<1	<1	<0.1	64	45	<1	<1	<1	<1	<1	<1	<3	<20	<50	<100	<100	<20	<100	ND	ND	< 0.01	< 0.01	<0.01	ND	<3
BH6M		<1	<0.2	1	3	<1	<0.1	50	220	<1	<1	2	<1	1	5	7	<20	<50	<100	<100	<20	<100	ND	11	0.04	0.08	0.08	ND	<3
BH9M		<1	<0.2	<1	<1	<1	<0.1	82	26	<1	<1	<1	<1	<1	<1	<3	<20	<50	<100	<100	<20	<100	ND	ND	<0.01	<0.01	<0.01	ND	<3
BH14N		2	<0.2	1	<1	<1	<0.1	71	150	<1	<1	<1	<1	<1	<1	<3	<20	<50	<100	<100	<20	<100	ND	18	0.02	<0.01	<0.01	7	4
GWQD1 (Duplicat	te of BH6M-1)	<1	<0.2	2	3	<1	<0.1	52	23	NA	NA	NA	<1 GILs	<1	6	9	<20	<50	<100	<100	20	<100	ND	ND	NA	NA	NA	ND	<3
ANZG (2018) GIL	Marine Water	NR	0.06²	27.4 (Cr III) 4.4 (Cr VI) ⁴	1.34	4.44	0.12	72	153'4	0.15	NR	50²	500 ² ′ ³	1805	55	75	6000	NL	100¹	100¹									
	Freshwater	NR	0.72	3.3 (Cr III) ⁵ 0.4 (Cr VI) ^{4/3}	1.44	3.44	0.06²	8²	84	0.15	NR	164	950413	1805	805	75	6000	NL	100³	100¹									
HEPA (2018) PFAS National Environmental Management Plan Guidelines	Recreational Drinking Water Marine Water Freshwater																								5.6 0.56 19	0.00023 ⁶ 0.00023 ⁶	0.7 0.07 NR NR		
NEPM HSL D (Commercial / Industrial)	2 m to < 4 m 4 m to < 8 m												5,000	NL NL	NL NL	NL NL	1000 1000	1000											
GIL (Drinking V		10	2	0.05 (Cr VI)	200	10	1	20		0.01			1	800	300	600													

Notes: All results and criteria are in µg/L, unless otherwise noted.

Highlighted values indicate concentrations exceed the adopted GIL.

High group values inducate concernations exceed the adopted Str.

NEPM 2013 Schedule B1. Groundwater investigation level for marrine waters ecosystem

HSL D Health screening level for commercial /industrial sites, as per Table 14(4) of NEPM 2013 Schedule B1. HSL for Sand was adopted to ensure most conservative values were used. HSL are applied based on the estimated source depth of groundwater at each monitoring well.

TISE D Treating Section Continuous Financial Financial Secs, as per Table 1979 of text in 2013 Schedule D. TISE for Salar has adopted to ensure most conservance water search water trades were used. TISE are appeared based on the estimated source depin of groundwater at each monitor

IL Not Limited (Ref. NEPM 2013, Schedule B1, Table 1(A)4)

NR No recommended assessment criteria are currently available for the indicated parameter(s).

PQL (Laboratory's) Practical Quantitation Limit

NT Not tested.

* F1 = TRH C6-C10 less BTEX

** F2 = TRH C10-C16 less Naphthalene

F2 = TRH C10-C16 less Naphthalene F3 = TRH C16-C34

*** F4 = TRH C34 - C40

ANZECC (2000) provides 7 µg/L as an assessment guideline for total petroleum hydrocarbons. Since the laboratory practical quantitation limits (POL) is higher than the ANZECC guideline, the POL has been adopted as the interim GIL, as prescribed in DEC (2007).

The 99% Trigger Values were adopted for this assessment due to bioaccumulation potential of associated analytes. Ref. ANZG (2018) and HEPA (2018)

Indicated threshold value may not protect key species from chronic toxicity. Ref. ANZG (2018).

4 Low reliability 95% trigger values were adopted. Ref. Section 8.3.7, ANZG (2018)

5 Unkown species protection percentage. Ref. ANZG (2018)

6 As the laboratory PQL is above the criterion, PQL is used as a working level for assessment.

Table T3 - Soil Analytcial Results: Acid Sulfate Soils

E24098 - Marrickville

		Analysis									
Sample ID	Material	pH (Field)	pHfox	Strength of Reaction	pH Difference (pH f - pH fox)						
Previous Investigations (Aargus	s 2014)	l									
BH1_0.5-1.0	Fill	8.5	5.9	-	2.6						
BH1_1.0-1.45	Silty CLAY	8.3	5.7	-	2.6						
BH1_3.5-4.0	Sandy CLAY	7.5	5.4	-	2.1						
BH2_0.5-1.0	Fill	8.4	5.9	-	2.5						
BH2_2.0-2.5	Silty CLAY	8	5.7	-	2.3						
BH2_4.0-4.5	Sandy CLAY	7.5	5.2	-	2.3						
BH2_7.0-7.5	Gravelly Sandy CLAY	7.6	5.1	-	2.5						
BH3_0.5-1.0	Reworked Silty CLAY	8.4	6.1	-	2.3						
BH3_1.5-2.0	Silty CLAY	7.9	5.8	-	2.1						
BH3_3.0-3.5	Sandy CLAY	7.6	5.4	-	2.2						
Current Investigation (El Austra	lia)										
BH7_1.4-1.5	Silty CLAY	6.3	5.1	Extreme	1.2						
BH7_2.4-2.5	Silty CLAY	6.5	4.9	Moderate	1.6						
BH7_3.1-3.2	Silty CLAY	6.3	5.6	Moderate	0.7						
BH7_4.0-4.1	Silty CLAY	6.4	6.1	Moderate	0.3						
BH14M_1.2-1.3	Silty CLAY	6.9	5.4	Moderate	1.5						
BH14M_1.8-1.9	Silty CLAY	6.8	5.2	Moderate	1.6						
BH14M_2.9-3.0	Silty CLAY	7.4	7.4	Extreme	0						
BH14M_3.8-3.9	Clayey SAND	6.8	6.4	Moderate	0.4						
		SILs									
ASSMAC (1998) Screening	Indicator of PASS	NR	<3.5	NR	NR						
Criteria	Indicator of AASS	<4.0	NR	NR	NR						

Notes:

NR No reference criteria available in current regulatory tools.

Appendix D – Site Photographs

Figure D-1 Entrance to 'Gorilla Constructions' Spray Painting Workshop showing concrete hardstand with patchwork.

Figure D-2 Sump Grate in Smash Repairs workshop (at time of inspection sump appeared near full with liquid and some sheen on the surface).

Figure D-3 Electrical Sub-Station no. 284 to the south west adjacent to the site at 200 Victoria Road, Marrickville.

Figure D-4 Chemicals (paints, solvents and varnishes associated with car repair) stored in the eastern storeroom within the smash repairs workshop.

Figure D-5 View of smash repairs and adjacent brick cottage from Victoria Road.

Figure D-6 Gravel road-base in northern portion of site forming pathway from the spash repairs workshop towards the spray painting workshop.

Figure D-7 Chemical storage in north eastern portion of stone cutting workshop (chemicals associated with stonecutting process and listed in Aargus (2014) DSI).

Figure D-8 Spray Painting booth within 'Gorilla Constructions' spray painting workshop, hot-works in process behind red partition.

Figure D-9 Laundry / dry cleaner on adjacent lot to the north east of the site

Figure D-10 Spray Painting booth (behind orange doors) in north eastern corner of smash repairs worskhop.

Figure D-11 Exposed (poorly contained) soils along western side of carpark.

Figure D-12 Internal southern portion of 'Harmony Stone'workshop.

Figure D-13 Storage of stone slabs associated with 'Harmony Stone' workshop.

Figure D-14 Waste stockpile in north eastern portion of carpark adjacent to smash repairs.

Appendix E – GPR Survey

Ground Penetrating Radar Report

14/12/2018 Date:

Client: **Environmental Investigations**

Contact: **Brigitte Lovette**

Site: 182 – 198 Victoria Road, Marrickville

Equipment: IDS Ouverture Dual Antenna Ground Penetrating Radar

A thorough underground search was carried out on Friday 14/12/2018 at 182 - 198 Victoria Road, Marrickville, to determine the possible whereabouts of any underground storage tanks across the site.

11 Scans in total were carried out (see attached PDF) However there is nothing to suggest that there are any existing UST's in the area.

Every precaution is taken by Hunter Smith to ensure the work has been carried out as safely and responsibly as possible.

IMPORTANT DISCLAIMER Due to the limitations of the equipment as described above and ground conditions, there will on occasion be no indication of the presence of underground objects, cavities or concealed services, including pipes or cables. The environment can also hinder or prevent accurate feedback or information. Trained staff will determine the location and position of concealed objects, cavities and services, to the best of their ability with the latest equipment. All results relayed to the Client will be the most accurate information possible, for the Client to then use at their discretion. Hunter Smith will not be liable for any actual or consequential costs incurred by the Client due to the existence of undetected objects, cavities or services.

Appendix F – Borehole Logs

Project Additional Site Investigation

Location 182-198 Victoria Road, Marrickville, NSW

 Position
 Refer to Figure 2
 Surface RL
 3.05 m AHD

 Job No.
 E24098.E03
 Contractor
 Geosense Drilling Pty Ltd

 Client
 Toga Constructions NSW Pty Ltd
 Drill Rig
 Hanjin D&B 8D

ant Toga Constructions NSVV Pty Ltd Dilli Rig Harijin D&B 6D

Inclination -90° Checked MG Date: 23/1/19

TEST: BH1M

Date Completed 20/12/18

1 OF 1

20/12/18

Sheet

Date Started

Logged BL

Drilling Sampling **Field Material Description** PIEZOMETER DETAILS JSCS SYMBOL MOISTURE CONDITION CONSISTENCY DENSITY ID Static Water Level
BH1M 1.00m RECOVERED SAMPLE OR FIELD TEST GRAPHIC LOG SOIL/ROCK MATERIAL DESCRIPTION WATER DEPTH (metres) Ξ DEPTH RL **0.14** 2.91 CONCRETE; 140 mm thick FILL: Clayey SAND; fine to coarse grained, dark grey, with gravel, no odour. BH1M_0.2-0.3 ES Concrete М PID = 1.1 ppm **0.50** 2.55 20/12/18 Silty CLAY; medium plasticity, grey mottled red, with ironstone gravel, no odour. BH1M_0.7-0.8 ES Bentonite PID = 1.2 ppm From 1.0 m, red mottled grey. uPVC 50 mm Casing uPVC 50 mm Slotted Screen BH1M 1.7-1.8 ES PID = 1.1 ppm From 2.0 m, medium to high plasticity, grey mottled red. М Sand 3.00 0.05 3 From 3.0 m, medium to high plasticity, grey, with trace ironstone gravel, grading into extremely weathered sandstone. SANDSTONE; fine to medium grained, red to grey, with Bentonite Cuttings 6.60 Hole Terminated at 6.60 mBGL; Target depth reached. 8 9

This borehole log should be read in conjunction with EI Australia's accompanying standard notes. **RL values extrapolated from survey plan (True North surveys, Ref: 8333DU, Dated: 01/09/2016)

BOREHOLE: BH2

Project Additional Site Investigation

182-198 Victoria Road, Marrickville, NSW Location

1 OF 2 Sheet Date Started 17/12/18 2.56 m AHD Position Refer to Figure 2 Surface RL Date Completed 18/12/18 Job No. E24098.E03 Contractor **BG** Drilling

Logged FY Client Toga Constructions NSW Pty Ltd Drill Rig Rig 7

Checked MG Date: 23/1/19 Inclination -90°

								Inclination -90°			Checked MG Date: 23	i/1/19
	Dri	lling		Sampling				Field Material Desc				
METHOD PENETRATION PESISTANCE	WATER	DEPTH (metres)	<i>DEPTH</i> RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS	
<u> </u>		0 —	0.12			ρ. L	Œ	CONCRETE; 120 mm thick.	_		CONCRETE HARDSTAND	丁
		- - - 1—	2.44	BH2_0.2-0.3 ES PID = 1.9 ppm BH2_0.7-0.8 ES PID = 1.2 ppm				FILL: Silty CLAY; high plasticity, dark grey to dark red-brown, with fine to medium grained, weathered sandstone gravel, no odour.	М		FILL	
		2-	1.70 0.86	BH2_1.3-1.4 ES PID = 1.1 ppm BH2_1.8-1.9 ES			СН	Silty CLAY; high plasticity, pale grey, with fine to medium, sub-rounded ironstone gravel, no odour.			NATURAL	+
		- - -	2.40 0.16	PID = 0.9 ppm		X		From 2.4 m, no ironstone gravel.				
AD/T		3				x x x x x x x						
		4 — - -				X			M			
-	GWNE	5— 5—				x x x				-		
		6— 6	5.62 -3.06				-	SANDSTONE; fine to medium grained, pale grey, with iron staining, no odour.			BEDROCK	
		- 7—										
NMIC		8-							-			
		9										
		- -										
		10				::::						

This borehole log should be read in conjunction with EI Australia's accompanying standard notes. \Re RL values extrapolated from survey plan (True North surveys, Ref: 8333DU, Dated: 01/09/2016)

BOREHOLE: BH2

Project Additional Site Investigation

182-198 Victoria Road, Marrickville, NSW Location

2 OF 2 Sheet Date Started 17/12/18 2.56 m AHD Position Refer to Figure 2 Surface RL Date Completed 18/12/18 Job No. E24098.E03 Contractor **BG** Drilling

Logged FY Client Toga Constructions NSW Pty Ltd Drill Rig Rig 7 Checked MG

Sampling Field Material Description Fie											ons NSW Pty Ltd Drill Rig Rig 7 Inclination -90°			Checked MG Date: 2	23/1/19
10	E			Dri	lling		Sampling				Field Material Desc	riptio	on		
SARUE IN It; the to medium grained, pale grey, with iron statisting, no odour.		METHOD	PENETRATION RESISTANCE	WATER		<i>DEPTH</i> RL		RECOVERED	GRAPHIC LOG	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY	STRUCTURE AND ADDITIONAL OBSERVATIONS	
19— 19— 19—			PEN - LEST - LES		10 —			REG REG							

This borehole log should be read in conjunction with EI Australia's accompanying standard notes. \Re RL values extrapolated from survey plan (True North surveys, Ref: 8333DU, Dated: 01/09/2016)

Project Additional Site Investigation

Location 182-198 Victoria Road, Marrickville, NSW

Position Refer to Figure 2 Surface RL 2.56 m AHD Job No. E24098.E03 Contractor **BG** Drilling Client

Toga Constructions NSW Pty Ltd Drill Rig Rig 7

17/12/18 Date Started Date Completed 17/12/18 Logged FY

Sheet

TEST: BH3M

1 OF 2

Checked MG Inclination -90° Date: 23/1/19 Drilling Sampling **Field Material Description** PIEZOMETER DETAILS JSCS SYMBOL MOISTURE CONDITION CONSISTENCY DENSITY ID Static Water Leve RECOVERED ВНЗМ SAMPLE OR FIELD TEST GRAPHIC LOG SOIL/ROCK MATERIAL DESCRIPTION WATER DEPTH (metres) DEPTH RL Concrete; 170 mm thick FILL: SAND; fine to medium grained, pale brown to brown, with fine to medium grained sandstone gravel, with brick fragments, no odour. BH3M_0.3-0.4 ES Grout PID = 1.4 ppm М BH3M_1.0-1.1 ES FILL: Silty CLAY; medium plasticity, pale brown to brown, trace fine to coarse, sub-angular gravel, no odour. PID = 1 ppm Bentonite BH3M_1.4-1.5 ES Silty CLAY; high plasticity, grey, trace fine to medium, sub-angular ironstone gravel, no odour. PID = 1 ppm uPVC 50 mm Casing BH3M 1.7-1.8 ES PID = 1 ppm uPVC 50 mm Slotted Screen BH3M_2.5-2.6 ES PID = 1.2 ppm 3.00 -0.44 3 From 3.0 m, pale grey. BH3M_3.7-3.8 ES AD/T PID = 0.9 ppm 4.20 -1.64 From 4.2 m, brown, with fine grained sand. Sand M BH3M_4.7-4.8 ES From 4.7 m, pale grey, trace fine grained sand. BH3M_5.7-5.8 ES 5.70-5.80 m BH3M 6.7-6.8 ES Bentonite SANDSTONE; fine to medium grained, with dark grey lamination, with iron staining, no odour. 8 9

> This borehole log should be read in conjunction with EI Australia's accompanying standard notes.

Project Additional Site Investigation

182-198 Victoria Road, Marrickville, NSW Location

Position Refer to Figure 2 Job No. E24098.E03

Client

Toga Constructions NSW Pty Ltd

2.56 m AHD Surface RL Contractor **BG** Drilling

Drill Rig Rig 7 Inclination -90°

2 OF 2 Sheet Date Started 17/12/18 Date Completed 17/12/18

TEST: BH3M

Logged FY

Checked MG Date: 23/1/19

									Inclination -90°			Checked MG Date: 23/1/
		Dril	ling		Sampling				Field Material Desc	riptio	on >	DIEZOMETED DETAIL O
METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	<i>DEPTH</i> RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY DENSITY	PIEZOMETER DETAILS ID Static Water Level BH3M
NMLC	-	GWNE	10 —					-	SANDSTONE; fine to medium grained, with dark grey lamination, with iron staining, no odour.	-	-	← Cuttings
			- - 14 —	13.39					Hole Terminated at 13.39 mBGL; Target depth reached.			
			- - -									
			15 — - - -									
			16 — - -									
			- 17 — - -									
			- 18 — -									
			- 19 —									
			20 —									
					This borehol RL values	ext	g shou rapola	ıld be ted f	e read in conjunction with El Australia's accompanying sta rom survey plan (True North surveys, Ref: 8333DU, Date	ındaı d: 01	rd not /09/2	tes. 016)